
Page 1 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Improving API reliability & security

https://netfoundry.io/

Page 2 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Optimizing API reliability and security

API providers have been stuck between a rock and a hard place:

1. Rock. APIs are now the #1 threat vector so providers want to stop exposing their API
edges to the Internet (API edges include API server, CDN, WAF, LB and API gateway).
Private APIs (not exposed to the Internet) would be more secure than Public APIs.

2. Hard place. To stop exposing their API edges to the Internet, these providers would
need VPN, MPLS and/or whitelisted IPs to make Private APIs available to API clients.
Those techniques are used in single clouds and private WANs, but are often
infeasible for Internet distributed API clients.

NetFoundry’s API Delivery Network gives API providers a new option: make APIs edge
inaccessible from the Internet, while the API clients still use public Internet access. Yes,
Private APIs which are accessed from API clients on the Internet! The solution is similar to
the Private API solutions which some cloud providers now offer. A key difference is the API
Delivery Network enables API providers to serve all API clients – in any cloud, private DC or
IoT environment – rather than just for APIs which stay in a single cloud or network.

Without the API Delivery Network, Public APIs are exposed to the Internet:

With the API Delivery Network, Providers seal their edge from the Internet – moving their
API servers or edges behind a firewall with a an inbound firewall rule of deny-all:

This is done without VPNs, MPLS or IP whitelisting, so API clients continue to consume the
APIs from the Internet.

This paper details the solution. However, API developers, cloud teams and ops teams can
spin up the solution, right now, for free. For example, follow these recipes from SPS, a
leading MSP, to secure Kubernetes APIs, enable zero trust access to a private API gateway
deployed in a public cloud, or enable multicloud, zero trust API access to a MuleSoft API.

https://netfoundry.io/
https://www.infosecurity-magazine.com/next-gen-infosec/api-attacks-threat-vector-2022/
https://www.spsolutions.com.mx/
https://medium.com/@rcarrascosps/from-c-to-z-cdac185c1aef
https://medium.com/@rcarrascosps/oci-api-gateway-deployed-as-a-dark-service-74348de6a38
https://medium.com/@rcarrascosps/a-ray-of-light-how-to-consume-a-mulesoft-dark-service-api-with-the-netroundry-io-nodejs-sdk-1c3246d3ae9e

Page 3 of 15 © NetFoundry Inc., 2023 NetFoundry.io

How to get on the API Delivery Network without VPNs or whitelisted IPs

Careful readers now have a burning question: how do I grant authorized API clients
(customers or internal users) access to the private API Delivery Network from anywhere on
the Internet without huge numbers of VPNs or whitelisted IPs to manage?

The short answer is to add code to the existing API code. Here’s how simple it can be – this
is the code for an app on Digital Ocean to access a private API on Oracle Cloud. The result of
this code is no public IP addresses, no open inbound firewall ports, no Internet exposure for
a multicloud, private API:

Adding that code is one of three options which developer and operations teams can use to

secure API edges right now with CloudZiti (hosted NaaS; free for up to 10 endpoints, or

OpenZiti (open source zero trust networking platform):

1. As shown above, option #1 is to use Ziti SDKs to add blocks of code to existing API
endpoint code (more examples: Golang, Python).

2. Option #2 is to add the Ziti code directly to API gateways (example: NGINX).
3. Option #3 is to use Ziti software agents.

Options can be combined – e.g. one option used on the API client side, and a different
option used on the API provider side. Options #2 and #3 are similar to VPNs except they are
built to only “intercept” the APIs, and to leverage full mesh, performance-optimized overlay
network, rather than a single point to point tunnel for all data. For example, if the API
gateway also talks to management systems, then the API provider can choose whether to
use the zero trust overlay for that communication or not – it doesn’t all get forced on to a
VPN.

https://netfoundry.io/
https://netfoundry.io/
https://openziti.github.io/index.html
https://github.com/openziti-test-kitchen/go-http
https://openziti.io/openziti-python-sdk-introduction
https://github.com/openziti/ngx_ziti_module

Page 4 of 15 © NetFoundry Inc., 2023 NetFoundry.io

In summary, the API provider uses these 3 options to ‘shift left’ to build zero trust
networking into the API itself (and the API client adds the code to their existing API query
code, as demonstrated above). This is made simple for the API providers – they spin up
private API Delivery Networks in minutes - because the API Delivery Network:

1. Provides all the zero trust and networking primitives.
2. Can be consumed as hosted, turnkey NaaS (“CloudZiti”), or as self-hosted open

source (“OpenZiti”).
3. Is a cloud native network, and doesn’t require any hardware deployment, so the Ziti

platform enables API producers to spin up private API Delivery Networks in minutes.

The API Delivery Network is built on the Ziti Zero Trust Networking Platform (which is used
for any app or API, and is detailed in the appendix). In addition to the security benefits, the
API Delivery Network optimizes performance by providing Smart Routing across multiple
tier one networks, choosing the best paths for each session:

The API client and provider endpoints shown above include X.509 certificates with an
integrated PKI solution for strong authorization. This enables API Providers to change their
inbound firewall rule to deny-all, reducing their attack surface:

• Since the policy enforcement point is moved to the originator, the API Provider edge
no longer listens to the Internet and then determines if requests are authorized.

• Instead, the API provider’s API edge solely communicates with its private API
Delivery Network (and this communication is outbound only from the API server or
API gateway towards the API Delivery Network).

The diagram below shows this in a bit more detail. With the API Delivery Network, each API
server (client side and provider side) uses private IPs, and still communicates with other API
servers over the Internet, even if the IP addresses overlap (the API Delivery Network is the
icon in the middle):

https://netfoundry.io/

Page 5 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Helping API providers mitigate against the top 10 OWASP API threats

The following section details how your API Delivery Network helps mitigate against the top

OWASP threats as a key part of a

mature API delivery approach designed

to optimize uptime and security. While

no model is 100% airtight from a

security perspective, these concepts

decrease the risk of breach-related

downtime:

A. API design includes data models

so each client has access to the

minimal amount of data they

require, with data validation of

all queries. It includes built-in

instrumentation and

management for simple and

strong monitoring, auditing and

logging.

B. Network authorization is the focus of the API Delivery Network. It protects API

Providers from Internet-based attackers exploiting vulnerabilities and

misconfigurations such as the ones described in the OWASP top 10.

C. API authentication and authorization enables providers to authorize each API

request. This is usually done by API servers, API gateways or WAFs. It is a critical

function, and is effective other than in cases like the vulnerabilities described in the

OWASP Top 10 (which is why those vulnerabilities are in the top 10). However,

https://netfoundry.io/

Page 6 of 15 © NetFoundry Inc., 2023 NetFoundry.io

when the API Delivery Network is authorizing at the network layer (mitigating

against the threats outlined by OWASP), and other solutions are authorizing at the

application layer, then API providers have two independent and complementary

layers of security.

D. Resiliency includes load balancing, high availability and rate limiting. It is critical at

scale, and needs to be built on the philosophy of assuming the system needs to

survive the failures of any individual components. This is an area in which API

gateways, CDNs and load balancers can be helpful. The fabric of the API Delivery

Network also provides this function.

E. Visibility includes operational and stakeholder visibility, logging, auditing and

diagnostics. Visibility is critical during the ‘good’ and the ‘bad’, as visibility ‘shines a

light’ on trends before they result in customer impact. The API Delivery Network is

helpful in providing network-level visibility, as well as eliminating noise from

unauthorized queries (since only authorized queries can now reach the API edge).

With that context, let’s look at the top OWASP threats in more detail. This is a summary

chart, and the details behind it are here.

This chart focuses on mitigating attacks from unauthorized endpoints. Authorized

endpoints also need to be considered to be an attack surface, but that attack surface is

orders of magnitude narrower than the Internet attack surface. The API Delivery Network

primarily mitigates the Internet attacker risk, but in some cases (see the detailed analysis

linked above) is also helpful for mitigating attacks from authorized users:

Mitigating risk from unauthorized API

clients without the API Delivery Network

Mitigating risk from unauthorized API
clients with the API Delivery Network

OWASP #1 Severity API Threat: Broken Object Level Authorization
OWASP #2 Severity API Threat: Broken User Authentication

• Network FWs can only prevent attacks
from known attackers, and only after
their IPs are added to the ACL.

• WAFs are excellent if the auth problem
is previously known and widespread
enough to be added to the WAF, and
there are no bugs or misconfigs.

• API GWs which provide mTLS user
authentication and basic OpenAPI
schema validations can be helpful for
cases in which there are no bugs or
misconfigs.

• The vulnerabilities can’t easily be
exploited from unauthorized users via
Internet because the API Delivery
Network takes providers’ API edge off
the Internet. In order to exploit the
bug or misconfigs, an attacker also
needs to break into your API Delivery
Network.

https://netfoundry.io/
https://netfoundry.io/whitepapers/NetFoundry%20OWASP%20API%20Top%2010%20Analysis.pdf

Page 7 of 15 © NetFoundry Inc., 2023 NetFoundry.io

OWASP #3 Severity API Threat: Excessive Data Exposure
When the API developer needs to expose many
object properties, or rely on the client to do all
the filtering, API edge solutions are more
vulnerable to network attacks (beyond basic
detection of sensitive data or schema
deviances).

The API Delivery Network means only
authorized API clients have network access,
drastically limiting the attack surface.

OWASP #4 Severity API Threat: Lack of Resources & Rate Limiting
Most WAFs, network firewalls and API gateways
are effective in helping to mitigate against these
threats.

The API Delivery Network means only
authorized API clients have network access,
drastically limiting the attack surface.

OWASP #5 Severity API Threat: Broken Function Level Authorization
OWASP #6 Severity API Threat: Mass Assignment

Network firewalls do not help with these issues,
and WAFs and API gateways can only do schema
validation in some cases (e.g. OpenAPI). From
the perspective of the WAF, the API user is
simply executing permitted functions.

The API Delivery Network means only
authorized API clients have network access,
drastically limiting the attack surface.

OWASP #7 Severity API Threat: Security Misconfiguration
OWASP #8 Severity API Threat: Injection

• Network FWs are irrelevant in dealing
with these misconfigurations.

• WAFs or API GWs may detect commonly
misconfigured HTTP headers, methods,
or permissive Cross-Origin resource
sharing (CORS), but can’t detect every
vulnerability, so are still vulnerable to
network-based attacks.

• WAFs are now very good at detecting
common injection flaws, such as SQL,
NoSQL, and Command Injection.

The API Delivery Network means only
authorized API clients have network access,
drastically limiting the attack surface.

OWASP #9 Severity API threat: Improper Assets Management
This category generally needs to be addressed by the API developer. Further details are in the
detailed analysis.

OWASP #10 Severity API Threat: Logging and Monitoring

This category generally can be addressed by a variety of solutions, but Ziti does provide
independent logging and monitoring.

https://netfoundry.io/
https://netfoundry.io/whitepapers/NetFoundry%20OWASP%20API%20Top%2010%20Analysis.pdf

Page 8 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Case studies and use cases

Common patterns, use cases and case study links:

1. API server to API server, B2B, multicloud and hybrid cloud. An API provider needs
to make APIs available to multiple businesses (or different internal orgs), and often
across different clouds and private data centers. Here is a case study of consuming a
MuleSoft API in the Oracle Cloud from a Digital Ocean cloud. All over a private
overlay with private IP addresses thanks to the bit of code you see to the left:

The capability to overcome this problem is embedding Ziti into the API or app, as
code, as you see above (more examples: a Java app, AWS Lambda webhook), so that
the entities don’t need VPN clients. However, the Ziti agents can also be used
because they are API and app specific – meaning, they will only deliver the specific
APIs or apps. So for example, if an Alice Company webserver is using the Ziti agent
to consume an API from Bob Company API endpoint, then the Ziti agent will only
carry the API over the zero trust overlay (for example, unless Alice Company chooses
to configure it differently, the web server will maintain its current communication
methods with all other entities). Other examples of this pattern:
Private APIs (Oracle)
Multicloud (IBM)
Hybrid cloud (CERM)
Kubernetes (SPS)

2. ISVs and SaaS providers managing software deployed in their customer’s clouds or
networks. Managing this software often involves API, SSH and or SFTP access. This
access is usually managed via whitelisted IP addresses or VPNs. In this case, the Ziti

https://netfoundry.io/
https://medium.com/@rcarrascosps/a-ray-of-light-how-to-consume-a-mulesoft-dark-service-api-with-the-netroundry-io-nodejs-sdk-1c3246d3ae9e
https://blogs.oracle.com/javamagazine/post/java-zero-trust-openziti
https://openziti.io/my-intern-assignment-call-a-dark-webhook-from-aws-lambda
https://blogs.oracle.com/cloud-infrastructure/post/connecting-to-oke-private-api-with-netfoundry-networking
https://developer.ibm.com/articles/building-a-multicloud-zero-trust-network-with-ziti-and-kubernetes/
https://netfoundry.io/anvil/NF-CERMCS.pdf
https://medium.com/@rcarrascosps/from-c-to-z-cdac185c1aef

Page 9 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Fabric is used as both an API Delivery Network, and to support other data flows:

3. Securing DevOps, GitOps and management APIs, such as Kubernetes Kubectl.
Management APIs are often the only vulnerability of privately deployed software, at
the very least requiring whitelisted IPs, and often being impractical to do over VPNs.
Instead, leaders like Ozone, use the API Delivery Network to transform these into
zero trust APIs, meaning that their entire software deployment (or their customer’s
environment) can now be secured from the Internet:

4. IoT APIs and IoT management. Especially because IoT devices and gateways often
have private IP addresses or constantly changing IPs, management via methods like
APIs, RDP and SSH becomes a complex set of port forwarding, NAT, overlapping IP
address management, whitelisted IPs and backhauling data through centralized
intermediate points. This often impairs performance as well. Private 5G (Microsoft)
and IoT analytics (TOOQ) are representative case studies. In the Microsoft case, a Ziti
agent is used on the edge servers. TOOQ uses an agent on Nvidia Jetson and
Raspberry Pi devices.

5. Distributed apps and APIs. Distributed API queries are multiplying as app and API
servers are moving closer to end users, while datastores remain more centralized.
Suddenly, these queries are traversing Internet instead of racks in the same data
center. Meanwhile, self-hosted software increasingly has APIs and webhooks to
remote services, creating holes in the firewall (whitelisted IPs), which can then be
exploited. The API Delivery Network fixes this (for example, NetFoundry’s customers
running self-hosted Confluence servers were protected. MSPs and MSSPs have the

https://netfoundry.io/
https://ozone.one/ozone-zitifies-private-kubernetes-deployments-with-netfoundry/
https://docs.microsoft.com/en-us/azure/private-multi-access-edge-compute-mec/partner-programs#network-functions
https://netfoundry.io/anvil/NF-TOOQCS.pdf
https://netfoundry.io/cve-2022-26134/

Page 10 of 15 © NetFoundry Inc., 2023 NetFoundry.io

same problem because their API access (and RDP, SSH, etc) to customer
environments also creates firewall holes which can be exploited. The MSP or MSSP
can be used as ransomware conduit (see the infamous Kaseya attack). Examples:
Zero trust user and admin access (Ramco)
Multicloud SAP remote management (Novis)
Zero trust MSSP services (Ohka)

Summary

Businesses use solutions such as MPLS-WAN, SD-WAN, VPNs and whitelisted IP addresses to

reduce Internet exposure. Cloud providers offer similar services in their clouds (e.g. AWS

PrivateLink, Azure Private Link) for the same purposes of eliminating Internet exposure.

However, most APIs are not in a single cloud or WAN, and need API clients to use Internet

access. APIs are therefore still exposed to the Internet, which is why they are so vulnerable.

The API Delivery Network gives API Providers a new alternative: make API edges

unreachable from the Internet, while enabling API clients to still use Internet access. Private

APIs, consumed from Internet endpoints!

Secure your API edge (server, gateway, WAF, CDN) now:

• CloudZiti (hosted NaaS), free for up to 10 endpoints…be up and running in minutes

• OpenZiti open source zero trust networking platform

Results:

• Improve availability and uptime. The API Delivery Network is a critical piece of a
complete architecture to maximize uptime and security

• Simplify API security. Replace firewall ACLs with one inbound rule: deny-all.

• Reduce solution sprawl. The platform secures the APIs, and secures remote
management of the API infrastructure (admin access and CI/CD system access).

• Simplify API operations. Ops no longer needs to parse through thousands of
unauthorized requests from the Internet.

• Innovate. The unique agentless approach enables developers to embed private,
zero trust overlays in API client endpoints, as code.

• Strengthen API security. Includes mTLS (with enrollment, PKI infrastructure, key
management, and standards-based options to integrate 3rd party CAs and identity
solutions); integrated X.509 certificate identities; encrypted data plane.

• Improve visible. The Ziti platform provides app-level network visibility to all API
producer internal groups, and even to the end customers (API clients), if desired.

• Improve performance. The Ziti Fabric includes real-time routing algorithms which
minimize latency, dynamically routing APIs across multiple tier one backbone paths,
selecting the best performing ones. API clients connect to the nearest Fabric
location, minimizing Internet on-ramps, and maximizing middle-mile backbones.

https://netfoundry.io/
https://netfoundry.io/anvil/NF-RamcoCS.pdf
https://netfoundry.io/anvil/NF-NovisCS.pdf
https://nfweb-wpengine.netdna-ssl.com/wp-content/uploads/2022/05/NF-Ohka-Case-Study.pdf
https://netfoundry.io/
https://openziti.github.io/index.html

Page 11 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Appendix 1: architecture details

Although this overview focuses on APIs, NetFoundry’s Ziti Platform combines zero trust
functions with SD-WAN type functions to enable businesses to apply zero trust networking
for any use case. This appendix shows this at a platform level.

The overall result looks like this:

Ziti endpoints

You can use three main types of endpoints. App-embedded, host-based (including IoT) and
cloud (or private data center) based:

All Ziti endpoints:

1. Contain X.509 identities.
2. Enable MFA and posture checks.
3. Secure the app, data and device (make it unreachable from the networks).
4. Enable extensions into security and networking tools and solutions.
5. Provide networking capabilities such as routing, visibility and control.

https://netfoundry.io/

Page 12 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Bootstrapped identification and authentication

Here is the basic diagram of the bootstrapped identity and authentication (details are here):

Endpoints need to be authenticated and authorized via their X.509 identities in order to
access your private overlay. The bootstrapping and Certificate Authority (CA) are included,
and you can add your own CA (via RFC 7030). The platform supports PKCS #11 - enables you
to store certificates in secure ways (e.g. HSMs).

The result is comprehensive security, including mTLS everywhere, without managing PKI:

Least privileged access via distributed controllers

Your authorization and access policies are enforced via your private, NetFoundry-hosted
(CloudZiti) or self-hosted (OpenZiti) controllers

https://netfoundry.io/
https://ziti.dev/blog/bootstrapping-trust-part-1-encryption-everywhere/
https://youtu.be/qQyUdDoAVeI

Page 13 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Least privilege access can be paired with your IDP or SSO type solutions such that even if
your IDP or SSO solution is compromised, there is still no network connection (layer 3).
Similarly, if Ziti is compromised, the attacker also often needs to thwart your IDP.

Private overlay fabrics

Your Ziti Routers function as combined routers/firewalls, but operate in the opposite model:
instead of delivering packets unless told differently (IP based firewall rules), Ziti Routers
deny all packets unless told differently (cryptography authorized flows). Ziti Routers are
self-hosted (OpenZiti) or hosted by NetFoundry (CloudZiti).

The Routers are in every cloud marketplace and can be deployed as VMs anywhere. The
Routers are governed by your policies (geofencing etc.) and are ephemeral – spin them up
and down, programmatically. Your Routers form mesh overlay fabrics to:

1. Provide you with end-to-end control, across the overlay.
2. Enable you to close all your inbound ports. Instead, authorized Ziti endpoints will

open outbound-only connections to authorized Routers. The Routers bridge the
connections, enabling bi-directional data across the private overlay.

3. Provide you with optimized routing. This is detailed in the next section.
4. Enforce least privilege access on your overlay. This enables you to only grant

permissions which are absolutely required for a given workload or session – no
network level access. This applies to systems as well, for example a CI/CD system
can only access certain ports on databases, and the connection will be ephemeral
(only available during a code push).

Optimized, multipoint routing

Real-time routing algorithms select the best path across your mesh, based on your metrics.
In the example above, two of the four Routers are selected at first. This will change,

https://netfoundry.io/

Page 14 of 15 © NetFoundry Inc., 2023 NetFoundry.io

automatically, as conditions change. Your Routers form your private, programmable Fabric,
which can be used to:

1. Enable your assets to deny all inbound connections, making your data unreachable
from the networks

2. Enforce geofencing and similar policies. In the example above, the Router with the
red connection was not eligible due to its location.

3. Use specific clouds for specific sessions.
4. Enable resiliency and improve quality (e.g. leverage Routers across multiple edges

and clouds). With Routers across multiple clouds and networks, there are many
potential routes. When “Internet weather” makes certain routes perform better
than others, or if certain routes have outages, the algorithms will automatically (per
programmable policy) select the lowest latency routes.

5. Create ephemeral data planes (periodically spin up new sets of routers, creating a
moving target).

Appendix 2: app-embedded, host-integrated, edge-integrated options

App embedded option (app, API, browser, proxy, etc. embedded)

App-embedded (agentless) solves these problems:
1. Security and control. Use cases which require the strongest security and control can

now securely connect without even trusting the hosts.
2. Topology. Use cases in which it is difficult to deploy agents, including B2B APIs, third

party endpoints, IoT and unikernal environments. By embedding in the app, data or
database, secure networking goes anywhere your app goes, eliminating DNS, VPN,
etc. problems (this video shows how to use the SDKs).

3. Integrations. You embed the software directly into the app, browser, proxy, API,
database driver, etc (the video in this blog post shows a Postgres driver).

Host integrated option (app specific agents for IT and IoT devices)

This option leverages Ziti endpoints, which support every device type, OS and cloud, and are

built on the Ziti SDKs described above:

https://netfoundry.io/
https://youtu.be/IPi2BxyIM8s
https://netfoundry.io/security-as-code-for-private-data-and-its-paths/
https://netfoundry.io/resources/support/downloads/networkversion7/

Page 15 of 15 © NetFoundry Inc., 2023 NetFoundry.io

Your Ziti endpoint is ‘moved’ from the app or browser in option #1 to the device hosting the

app in this option.

Edge-integrated option (containers or VMs):

In this option, Ziti endpoints are deployed as containers or VMs on modems, DMZ routers,

edge servers and cloud instances:

This option places your endpoints on aggregation points in places like your DMZ or the

edges of cloud networks.

https://netfoundry.io/

